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ABSTRACT
Distributed Constraints Optimization (DCOP) is a power-
ful framework for representing and solving distributed com-
binatorial problems, where the variables of the problem are
owned by different agents. DCOP algorithms search for the
optimal solution, optimizing the total gain (or cost) that is
composed of all gains of all agents. Local search (LS) DCOP
algorithms search locally for an approximate such solution.

Many multi-agent problems include constraints that pro-
duce different gains (or costs) for the participating agents.
Asymmetric gains of constrained agents cannot be naturally
represented by the standard DCOP model.

The present paper proposes a general framework for Asym-
metric DCOPs (ADCOPs). The new framework is described
and its differences from former attempts are discussed. New
local search algorithms for ADCOPs are introduced and
their advantages over existing algorithms and over former
representations are discussed in detail.

The new proposed algorithms for the ADCOP framework
are evaluated experimentally and their performance com-
pared to existing algorithms. Two measures of performance
are used: quality of solutions and loss of privacy. The re-
sults show that the new algorithms significantly outperform
existing DCOP algorithms with respect to both measures.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms
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1. INTRODUCTION
Multi agent systems (MAS) often include a combinatorial

problem which is distributed among the agents. Some exam-
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ples of multi agent combinatorial problems are the Meeting
Scheduling problem, Mobile Sensor nets and Flight Schedul-
ing. The natural representation of such problems in terms
of variables which are owned and assigned by agents and
in terms of values (whether costs or utilities) for combina-
tions of assignments to variables of different agents, has en-
couraged the study of Distributed Constraint Optimization
Problems (DCOPs). DCOPs are a powerful framework for
formulating and solving MAS combinatorial problems. In
the last decade, algorithmic search techniques for DCOPs
were intensively studied [13, 18, 11, 2]. Since DCOPs are
NP-hard, many recent studies consider incomplete (local)
search algorithms [10, 24, 16, 25, 20].

Aspects of the DCOP - MAS relationship are discussed by
[8, 1]. The authors of [1] examine the analogy between the
DCOP formulation and a class of games known as“Potential
Games”. The importance of this analogy lies in the fact
that every finite potential game possesses at least one pure
strategy Nash Equilibrium (NE) [14].

In the world of game theory, a pure strategy NE is a stable
profile of actions corresponding to the set of all participants,
in which any unilateral change of action by a single partic-
ipant will not yield a better personal gain for the partici-
pant. In the DCOP formulation, the above definition coin-
cides with special solutions known as local optima (minima
or maxima) [22, 24]. These solutions are sets of assignments
to variables made by all agents, in which a single change of
assignment by an agent will only reduce the global gain.

The source of this correspondence between NEs and lo-
cal optima stems from the constraint structure of DCOPs.
Each constraint C over variables of k agents is defined as a
mapping from the domains of the variables to a single real
value:

C : Di1 × Di2 × · · ·Dik → R
+ ∪ {0}

The above definition of a constraint implies that the cost
(gain) of a constraint is the same for all participating agents.
When an agent lowers its cost or gain from a constraint, all
of its constraint peers share a similar decrement in cost from
that constraint. Thus, when considering local optima, it is
clear that any change of an assignment can only reduce both
global and personal gains.

In many real life situations a constrained agent stands
to gain differently from others connected to the same con-
straint. In fact, this is the natural scenario in a typical
MAS situation. Take the meeting scheduling problem for
example. Scheduling a meeting of several agents typically
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results in different gains for different agents participating in
a meeting.

The above observation calls for a generalization of the
standard DCOP model [13, 12, 2]. A general DCOP has
constraints that include asymmetric gains for the involved
agents.

The present study proposes Asymmetric DCOPs (AD-
COPs), a model for representing asymmetric combinato-
rial multi agent problems. ADCOPs naturally accommo-
date constraints where the participating agents have differ-
ent gains or costs. A few former studies proposed to capture
asymmetric gains among constraining agents by introducing
additional variables for each agent. The additional variables
are duplicates of the variables of constraining agents. Such
a representation uses inner constraints with the duplicate
variables to represent the asymmetric gains [10, 17]. The
complete scheme, of duplicating all variables of constraining
agents and of using rigid constraints to enforce equality of
assignments with other agents was termed Private Events as
Variables (PEAV) by [10].

The advantages of the proposed model in comparison to
PEAV are discussed and demonstrated in Section 3. Most
important, we demonstrate that PEAV generates for stan-
dard local search local optima states which may prevent lo-
cal search algorithms from converging to higher quality local
optima as in the proposed model.

In both the former model and the ADCOP model pro-
posed in this work, the guaranteed convergence to a local
optima does not apply as for standard DCOP. Existing lo-
cal search algorithms fail to converge to a local optima and
as a result produce low quality solutions. A number of alter-
native algorithms for ADCOPs are proposed along with the
trade-offs between them in terms of solution quality, privacy
loss.

The rest of this paper is organized as follows. A short
background to local search for DCOPs is presented in Sec-
tion 2. Section 3 presents the proposed asymmetric DCOP
model and discusses its importance in view of the different
DCOP representations of asymmetric problems. This is fol-
lowed by Section 4 which presents new algorithms for solv-
ing asymmetric problems. Section 5 includes an extensive
experimental evaluation of all algorithms. Two measures are
used to evaluate performance of algorithms. the first mea-
sure is the most common and natural - the quality of the
produced solutions. The second measure of performance re-
lates specifically to the asymmetry of constraints. When
constraints have different gains for the constraining agents
it is of much interest to measure how much of this private
information is revealed during search. It turns out that the
loss of privacy of constraints differs widely among the dif-
ferent ADCOP algorithms. The results of the experimental
evaluation of Section 5 are quite conclusive. The proposed
ADCOP algorithms perform better than former, standard
DCOP, algorithms with respect to the above two measures
of performance. The paper is summarized and conclusions
are drawn in Section 6.

2. LOCAL SEARCH FOR DCOPS
We first present the standard DCOP model followed by

the main a description of leading local search algorithms for
DCOPs.

2.1 Distributed Constraint Optimization

DSA
1. value ← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. if (ReplacementDecision())
6. select and assign the next value

Figure 1: Standard DSA.

A DCOP is a tuple < A,X ,D,R >. A is a finite set
of agents A1, A2, ..., An. X is a finite set of variables X1,
X2, ..., Xm. Each variable is held by a single agent (an agent
may hold more than one variable). D is a set of domains D1,
D2, ..., Dm. Each domain Di contains a finite set of values
which can be assigned to variable Xi. R is a set of relations
(constraints). Each constraint C ∈ R defines a non-negative
cost for every possible value combination of a set of variables,
and is of the form C : Di1 × Di2 × . . . × Dik → R

+ ∪ {0}.
A binary constraint refers to exactly two variables and is
of the form Cij : Di × Dj → R

+ ∪ {0}. A binary DCOP
is a DCOP in which all constraints are binary. An assign-
ment (or a label) is a pair including a variable, and a value
from that variable’s domain. A partial assignment (PA) is a
set of assignments, in which each variable appears at most
once. vars(PA) is the set of all variables that appear in PA,
vars(PA) = {Xi | ∃a ∈ Di ∧ (Xi, a) ∈ PA}. A constraint
C ∈ R of the form C : Di1 × Di2 × . . . × Dik → R

+ ∪ {0}
is applicable to PA if Xi1 , Xi2 , . . . , Xik ∈ vars(PA). The
cost of a partial assignment PA is the sum of all applicable
constraints to PA over the assignments in PA. A full assign-
ment is a partial assignment that includes all the variables
(vars(PA) = X ). A solution is a full assignment of minimal
cost.

2.2 Local Search
The general design of local search algorithms for Dis-

tributed Constraint Optimization Problems is synchronous.
In each step of the algorithm an agent sends its assignment
to all its neighbors in the constraint network and receives the
assignments of all its neighbors. For lack of space we present
in detail only two algorithms that apply to this general
framework - the Distributed Stochastic Algorithm (DSA) [24]
and the Max Gain Message (MGM ) algorithm [7]. 1

In the initial step of the DSA algorithm agents pick some
value for their variable (randomly according to [24]). Next,
agents perform a sequence of steps until some termination
condition is met. In each step, each agent sends its value
assignment to its neighbors in the constraints graph and re-
ceives the assignments of its neighbors. The present paper
follows the general definition which does not include a syn-
chronization mechanism. If such a mechanism exists, agents
in DSA can send value messages only in steps in which they
change their assignments. After collecting the assignments
of all its neighbors, each agent decides whether to keep its
value assignment or to change it, by using a stochastic strat-
egy (see [24] for details on the possible strategies and the
difference in the resulting performance). A sketch of DSA is
presented in Figure 1.

The MGM algorithm is a simple version of the DBA algo-

1Our description considers an improvement to be a decrease
in the number of violated constraints (as in Max-CSPs).
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MGM
1. value ← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. LR ← BestPossibleLocalReduction()
6. Send LR to neighbors
7. Collect LRs from neighbors
8. if (LR > 0)
9. if (LR > LRs of neighbors

(ties broken using indexes))
10. value ← the value that gives LR

Figure 2: Standard MGM.

rithm [22, 24]. In every synchronous step, each agent sends
its current value assignment to its neighbors and collects
their current value assignments. After receiving the assign-
ments of all its neighbors, the agent computes the maximal
improvement (e.g., reduction in cost) to its local state that
can be achieved by replacing its assignment and sends this
proposed reduction to its neighbors. After collecting the
proposed reductions from its neighbors, each agent changes
its assignment only if its proposed reduction is greater than
the reductions proposed by all of its neighbors. In more
advanced versions of MGM, agents group together in or-
der to propose a common improvement and thus avoid local
minima to which a smaller group would have converged. A
sketch of the standard MGM algorithm is in Figure 2. Af-
ter selecting a random value for its variable (line 1), the
agent enters a loop where each iteration is a step of the al-
gorithm. After sending its assignment to its neighbors and
collecting their assignments (lines 3,4), the agent calculates
its best weight reduction and sends it to its neighbors (lines
5,6). After receiving the possible weight reductions of all
of its neighbors the agent decides whether to replace its as-
signment and upon a positive decision reassigns its variable
(lines 7-10).

A very different approach towards local search is imple-
mented in the Max-Sum algorithm [19]. Max-Sum is an
asynchronous algorithm in which agents exchange messages
which accumulate the sum of costs for possible assignments.
The algorithm begins by agents sending to their neighbors
messages which include the cost for each of the receiving
agents’ possible assignments. An agent that receives a mes-
sage, sends messages to each of its other neighbors in which
the cost of the possible assignments of the neighbor is added
to the best cost according to the message received. When the
algorithm is terminated (after a predefined condition such
as the number of messages sent by each agent) each agent
selects the value assignment with the lowest cost.

The Max-Sum algorithm was found very successful in pro-
ducing higher quality solutions than standard local search
algorithms for DCOPs [19]. Furthermore, one of its main
advantages for standard DCOPs is that for a tree struc-
ture constraints graph it converges to an optimal solution
in polynomial time. This advantage was used to produce
guarantees to the quality solution in the general case in [19].

3. ASYMMETRIC DCOPS (ADCOP)
ADCOPs generalize DCOPs in the following manner: in-

stead of assuming equal gains for constrained agents, the

ADCOP constraint explicitly defines the exact gain of each
participant. That is, domain values are mapped to a tuple
of costs, one for each constrained agent.

More formally, an ADCOP is defined by the following tu-
ple < A,X ,D,R >, where A, X and D are defined in exactly
the same manner as in DCOPs. Each constraint C ∈ R of
an asymmetric DCOP defines a set of non-negative costs for
every possible value combination of a set of variables, and
takes the following form:

C : Di1 × Di2 × · · ·Dik →
k∏

j=1

R
+ ∪ {0}

As usual, a binary constraint refers to exactly two vari-
ables and for ADCOPs takes the form Cij : Di × Dj →
R

+ × R
+.

This definition of a constraint is natural to general MAS
problems, and requires little manipulation when formulat-
ing a problem as an ADCOP. The upper part of Figure 3,
along with Figure 4 illustrate an example ADCOP that rep-
resents a MAS problem. Each agent holds either the left
or right hand side of the values depicted in the bi-matrix of
Figure 4. The constraint between the two interacting agents
maps assignment pairs to value pairs. For example: if agent
A1 assigns b, and agent A2 assigns x, A1’s cost will be 7,
and A2’s cost will be 2.

Figure 3: An ADCOP representation of a MAS
problem (above), and its translation to a PEAV
DCOP(below)

Let us present in short some alternatives for representing
asymmetric constraints by standard DCOPs.

• Disclosure of constraint gains: The simplest ap-
proach to solving MAS problems involving asymmet-
ric gains by DCOPs is through the disclosure of con-
straint gains. Since the DCOP constraint structure
needs only information on the joint gain of an assign-
ment, one may decide to disclose information of all
constraint peers and assign the aggregated value to
the constraint. However, revealing this information is
essentially similar to revealing preferences which are
often private [4, 9, 23].

• Use of unary constraints A possible technique for
representing preferences and affecting different gains
is through the introduction of unary constraints. Con-
straints are added to each variable participating in a
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A1\A2 x y

a 3, 4 6, 1

b 7, 2 5, 8

Figure 4: A 2 agent interaction. Agent 1’s action is
either a or b and its costs are the left hand values.
Agent 2’s actions are x or y and its costs are on the
right side

constraint and the additional costs generate asymme-
try. However, this approach fails to properly capture
constraints where the personal valuation of a state
by an agent is dependent upon assignments by other
agents.

• Private Events As Variables (PEAV) The PEAV
model [10, 17] was the first model capable of captur-
ing asymmetric gains. In PEAV each agent holds in
addition to its own standard variable representing its
private state, one mirror variable per each of its neigh-
bors in the constraint network (i.e., for each agent
constrained with it). Consistency with the neighbors’
state variables is imposed by a set of hard equality
constraints. In order to avoid ideally hard constraints,
the PEAV model proposes costs for unequal assign-
ment pairs which are large enough to exceed that of a
predefined calculated upper bound [9].

The resulting representation of an assymetric MAS
problem in a PEAV DCOP is much larger in terms
of variables and constraints than an ADCOP. This is
clear in the example in the lower part of Figure 3.
On the other hand, one may argue that formulating a
problem as a DCOP allows one to employ all existing
DCOP search algorithm instead of devising specialized
protocols. This argument, which applies for complete
algorithms, is not always true for local search algo-
rithms.

Consider the 2 agent problem described in the bi-matrix
in Figure 4, in which agents try to minimize the total sum of
costs. This interaction corresponds to the constraints graph
in Figure 3.

Figure 5 presents the PEAV representation of the same
problem. The ADCOP formulation of this problems con-
sists of a single constraint containing the entire table of Fig-
ure 4, while the PEAV formulation splits this table in two
(each side corresponds to one of the agent’s intra-agent con-
straints), and adds the consistency constraints. The equality
constraint for the problem at hand incurs a cost of 50 when
a pair of unequal assignments is made.

Introducing new variables and constraints slightly changes
the nature of the interaction itself. The growth of each
agent’s assignment space results in the PEAV interaction
described with the aid of “complex” variables in the table
depicted in Figure 5.

The table in Figure 5 demonstrates an important aspect
of the new interaction - each one of the “consistent” states is
now also a local minimum. As a result, this revised interac-
tion now poses difficulties to many local search techniques
for DCOPs:

A1\A2 〈x, a′〉 〈y, a′〉 〈x, b′〉 〈y, b′〉
〈a, x′〉 7 54 55 111

〈a, y′〉 60 7 108 64

〈b, x′〉 61 108 9 65

〈b, y′〉 109 56 57 13

Figure 5: The underlying search space of the gener-
ated PEAV formulation

• DSA [24] - Consider for example an initial random
assignment: A1 : 〈b, x′〉 , A2 : 〈y, b′〉. If a single agent
decides to update its assignment (with probability p),
the system converges to a local minimum in which no
agent will attempt to change its value. Note that the
end value in such a case is either one of the worst two
solutions.

• MGM [7] - MGM, being a “hill climber” algorithm by
nature, will present similar behavior. However, unlike
DSA the converged solution of MGM will be the best
of two possible ones.

The PEAV formulation of an asymmetric cost problem
(e.g., Figure 4) modifies the original nature of the problem
in two important aspects:

1. By generating new local minima, and thus, implicitly,
new NEs. The new local minima can easily be observed
in Figure 5, and when considering and analyzing the
personal cost of each agent from this interaction one
sees that these correspond to NEs. This implies that
the PEAV formulation of a given problem produces
new stable points (local optima)! In the case of the
example in Figure 4, four new NEs are generated where
there orginally were none.

2. Hard equality constraints between ”mirror” variables
prevent a single agent from performing any assignment
replacement with positive reduction after the conver-
gence to the first valid state.

In view of these problems, it is clear that the PEAV for-
mulation loses much of its appeal when considering large
asymmetric problems. Next, we turn to ADCOPs.

4. ADCOP ALGORITHMS
Let us start the discussion of local search algorithms for

ADCOPs by demonstrating the shortcomings of existing lo-
cal search methods.

Consider again the 2 agent problem described in Figure 4.
Assuming each agent is only aware of the left (agent A1) or
right (A2) hand value in the matrix, standard DCOP LS
algorithms such as DSA and MGM can be applied to this
problem. In DSA, for example, agents only consider their
personal gain, or improvement, and as a result change values
according to their local state. A similar situation exists with
respect to MGM. However, the maximum change that is
reported by agents running MGM does not necessarily imply
an improvement to neighbors as well.
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The asymmetric structure of constraints alters the algo-
rithms’ behavior. For example, while DSA and MGM con-
verge to local optima on standard DCOPs, this is not true
for ADCOPs. In local search agents continueously attempt
to change their assignment if an improving assignment ex-
ists. When no such assignment is found by any of the agents
the state of the system as a whole is said to be stable. This
state is not necessarily a local optimum when asymmetric
gains are considered. A change of an assignment by an agent
may increase its own local cost, but due to asymmetry this
change can also result in an overall lower cost to the sys-
tem as a whole! On the other hand, such stable solutions
comply with the definition of Nash Equilibria - no unilateral
change by any single agent can improve its state. For simi-
lar reasons, MGM in ADCOPs looses its important mono-
tonicity property [7]. Agents sending their maximal possible
improvement to the current state to their neighbors can ac-
tually consider a change that would cause a deterioration of
the state of their neighbors and of the global state.

Nash Equilibrium does not necessarily coincide with the
optimum of a global objective function. In the well known
example of the prisoners’ dilemma, when maximizing the
gain of participants, the globally worst solution is the only
NE. It is important to note that pure strategy NE do not ex-
ist in every asymmetric problem and even in the presence of
NEs, it is possible that neither DSA nor MGM will converge
to it. Thus, the convergence prediction for DCOPs made
by [1] does not apply in the case of ADCOP. It seems that
despite their applicability to ADCOPs, some LS algorithms
are expected to provide low quality results for ADCOPs. It
is important to notice that the PEAV model does not solve
the problem for DSA and MGM. In the case of DSA, an
agent only considers its neighbors’ current assignments. In
the case of MGM, every change to a variable that would
generate inequality would not be considered as a maximal
reduction. Thus, both algorithms are expected to perform
exactly the same in the PEAV model.

Max-Sum is another local search algorithm that also turns
out to be problematic. When solving the small example
in Figure 4, each agent will generate a single message and
send it to its neighbor. In both models, this message will
include the costs for every possible assignment of its neigh-
bors. Since the problem has no cycles, this exchange of
messages will be the only exchange of messages and agents
would select their assignments accordingly. However, in the
presented example, A1 will select b while A2 will select y,
resulting in the worst possible solution (with highest cost
for both). This is in contrast to using Max-Sum in the sym-
metric DCOP model where when the problem contains no
cycles, the algorithm is guaranteed to converge to the opti-
mal solution [19]. Note that the same problem would occur
in the PEAV model since Max-Sum messages do not include
the selected assignments, only costs. Thus, each agent will
select the assignment according to its neighbors’ valuation.

4.1 Local Search with asymmetric gains
The present study proposes several local search algorithms

specifically designed for ADCOPs. These algorithms, de-
scribed next, attempt to incorporate information from the
agent’s local neighborhood and utilize it to locate high qual-
ity solutions.
Asymmetric Coordinated Local Search (ACLS)

The ACLS algorithm presented in Figure 6, attempts to

ACLS
1. value ← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. IMP SET ← LocalReductions()
6. PV ← RandomSelectProposedValue(IMP SET )
7. send PV to neighbors
8. collect PV s from neighbors
9. foreach (neighbor n)
10. send constraint cost with n’s PV
11. collect all constraints costs
12. cost ← sumOfAllConstraintsCosts × C
13. if (cost < currentState)
14. assign with probability p

value ← PV

Figure 6: ACLS.

MCS-MGM
1. value ← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. foreach (neighbor n)
6. Δ ← increase due to n’s new value
7. if (Δ > n’s last known LR)
8. send constraint cost with n’s new value
9. change constraint cost with n’s new value to 0
10. collect neighbors’ constraint updates
11. update constraint with each neighbors
12. LR ← BestPossibleLocalReduction()
13. Send LR to neighbors
14. Collect LRs from neighbors
15. if (LR > 0)
16. if (LR > LRs of neighbors

(ties broken using indexes))
17. value ← the value that gives LR

Figure 7: MCS-MGM.

combine information from each agents’ surrounding in order
to produce a global evaluation.

It proceeds in synchronous steps and continues running
(after a random initial assignment) until a termination con-
dition is met. At each step, an ACLS agent begins by send-
ing its current assignment to its neighbors and collecting as-
signments from them. It then collects all assignment which
can improve its local state (line 5). Based on this improving
set a proposed assignment PV is randomly picked according
to the distribution of gains from each proposal (line 6). This
proposal is sent to all neighbors and the neighbors propos-
als are collected (lines 7-8). An agent receiving a proposal
responds with the value of its side of the constraint, result-
ing from its current assignment and the proposed assign-
ment (lines 9-10). When all such impact messages arrive,
the agent assesses the potential gain or loss from the assign-
ment (lines 11-12). ACLS agents use a special coordination
value, C, representing the amount of cooperation with their
neighborhood. That is, when this constant is zero, all impact
messages are ignored and ACLS produces results similar to
those of DSA (albeit with a high overhead of network load
and privacy degradation). An ACLS agent concludes each
round by committing to a change with probability p (lines
13-14).
Minimal Constraint Sharing MGM (MCS-MGM)

Similarly to ACLS, the MCS-MGM algorithm presented
in Figure 7 also attempts to employ knowledge of its local
neighborhood to achieve a better gain to its surrondings.
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The MCS-MGM algorithm also proceeds in synchronous
steps and terminates according to a pre-defined condition.
Each step consists of three different interaction phases. An
agent begins by exchanging assignments with its neighbors
(lines 3-4). It then evaluates the impact of its neighbor’s
assignment change on its own local state. If the neighbor’s
assignment change degrades the current state by more than
that neighbor’s last known best local reduction, the con-
straint is passed on to the neighbor. That is, the agent sends
to its neighbor its side of the constraint with the neighbor’s
new value, and assigns a cost of zero instead (lines 5-9). The
updated constraints are gathered by agents and the local
sub-problem is slightly modified. Using the new informa-
tion, the agent seeks the best local reduction and sends this
information to its peers. As in MGM, the agents declar-
ing the highest local reductions, change their values (lines
12-17).

A small adjustment to the MCS-MGM algorithm can guar-
antee its convergence to a local optima (note that it con-
verges to a local optima and not to a NE). Line 7 of the
algorithm is replaced by:

7. if (Δ > 0)

We call the resulting algorithm Guaranteed Convergence
Asymmetric MGM (GCA-MGM ). GCA-MGM is expected
to preserve less privacy than MCS-MGM since it has a
weaker condition for exchanging constraints among agents
but it guarantees convergence:

Theorem 1. GCA-MGM is guaranteed to converge to a
local optima in a finite number of steps.

Proof: Assume GCA-MGM does not converge. Thus, the
agents repeatedly change their assignments. Each change
that causes an increase for some agent triggers a constraint
exchange and therefore the next time this assignment change
is performed, it will not cause an increase (i.e. cannot occur
more than once). Thus, the number of increases in cost
is bounded by the number of constraints which is finite.
After all possible increments have caused an exchange of
constraints, the convergence is guaranteed as for standard
MGM [10, 16]. �

Our experiments demonstrate that although MCS-MGM
does not guarantee convergence, both versions converge very
fast and this fast convergence has a strong impact on privacy
loss during the search process as will be presented in the
following section.

5. EXPERIMENTAL EVALUATION
The experimental evaluation uses two different domains.

The first set of experiments includes Max-ADCSPs prob-
lems, which are an asymmetric variation of Max-DCSPs.
Max-DCSPs are a subclass of DCOPs in which all constraint
costs (weights) are one, and all agents search for the mini-
mal cost assignment [13, 6]. The asymmetric version of such
problems, Max-ADCSPs, includes asymmetric constraints
with a cost of one. The second set of experiments uses ran-
dom graphical games [5, 15, 7]. In these problems, each con-
straint between two agents represents a local randomly gen-
erated game. In these local interactions, each constrained
agent is assigned a cost in the range [0..9] for each joint ac-
tion (assignment pair) of the two constraining agents. The
goal of the agents is to reach a globally minimal cost assign-
ment.

Five different constraint graphs were considered in the
Max-ADCSP setup, and ten other graphs in the random
graphical games. Both involved 100 agents each with an
average of 10 neighbors and a domain of size 10 values. In
the case of Max-ADCSPs, a random 20% of each agent’s
values resulted in a “broken constraint” (of cost 1), with
each one of its neighbors (note that this translates to a 36%
chance that an assignment pair will have a cost higher than
zero). In the case of the random games, each constraint
matrix included 50% zeroes, while the rest of the assignment
pair values had random values in the range [0..9].

Figure 8: Solution quality - Max-ADCSP

A large number of algorithms were examined in both se-
tups. These include DSA, MGM, MGM-2, Max-Sum, ACLS,
MCS-MGM and GCA-MGM (with different parameters).
These algorithms were executed for a maximum of 1000 cy-
cles, where a cycle includes all actions between two con-
secutives value messages sent by the same agent (Max-Sum
cycles include both P and Q type messages).

Figure 8 presents the average solution quality for each one
of the algorithms as a function of cycles. MCS-MGM pro-
duced the highest quality results and GCA-MGM produced
solutions of slightly lower quality. After 1000 cycles the three
best algorithms were MCS-MGM, GCA-MGM and ACLS
(average costs of 42.2, 52.2, 56.6 respectively). The high-
est costs (e.g., worst solutions) were reported by Max-Sum
with average costs of 190.6 after 1000 cycles (these results
fall beyond the scope of the graph in Figure 8). Max-Sum
converged to its final solution in less than 5 cycles, and did
not further explore the search space. Both MCS-MGM and
GCA-MGM converged fast and within a surprisingly low
number of cycles - 49.2 (MCS-MGM ) and 36 (GCA-MGM )
cycles on average.

Also of interest is the relation between MGM and MGM-
2. While [7] reports higher quality solutions for MGM-2 over
MGM on standard DCOPs, our results indicate that in the
asymmetric case, MGM and MGM-2 provide roughly the
same quality of results (with a slight advantage to MGM ’s
final solution - a cost of 67 for MGM-2 and a cost of 61.4 for
MGM ). In MGM-2, an agent optimizing for itself and an-
other agent can cause neighboring agents of both an increase
in their valuation of the proposed alternative state. As a re-
sult, agents optimizing for different pairs can generate loops
of assignment changes just as described for MGM. Thus,
the increase in the size of the group of agents considered by
the optimizing agent is not sufficient to insure convergence.
A similar phenomenon where in the presence of uncertainty
MGM-2 fails to provide higher quality solutions than MGM
was reported by [21].
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Figure 9: Solution quality - random graphical games

The above results for Max-ADCSPs are for the large part
consistent with the results of the second setup - random
graphical games (Figure 9). As before, the highest quality
solutions were produced by MCS-MGM, ACLS and GCA-
MGM (an average cost of 1198.4, 1217.6 and 1355.5 respec-
tively). However, in the random games setup ACLS con-
verge to a solution faster than MCS-MGM (60.3 cycles for
GCA-MGM, 124.5 for ACLS and 268 for MCS-MGM ), and
to a better solution than that of GCA-MGM. In this setting
Max-Sum failed to converge. Its solution cost moved be-
tween 2300 and 2500 (again, beyond the scope of the graph
in Figure 9).

The above results indicate that the three proposed al-
gorithms ,MCS-MGM, GCA-MGM and ACLS, are better
suited for the asymmetric case. Clearly, the cooperation of
agents running these algorithms allows them to achieve bet-
ter solutions. Such cooperation, however, requires some rev-
elation of private information. Thus, it is important to asses
the privacy loss resulting from the coordination of agents (in
contrast to standard local search (1-opt) algorithms which
are preserving high level of privacy [3]). To measure the
overall loss of privacy in our system of agents one needs to
aggregate the number of revealed constraint parts by each
agent [4, 3].

In ACLS, a fraction of the constraint is revealed in line 10
(Figure 6), while MCS-MGM and GCA-MGM reveal con-
straint information in lines 8 and 9 (Figure 7). Another
algorithm that attempts to coordinate joint moves is MGM-
2 [7], in which offerer agents propose several improving as-
signments along with their costs to one of their peers, which
respond with the lowest improving cost incurred on them
and thus revealing a much larger fraction of the constraint
in every such interaction.

Figures 10 and 11 present the privacy loss measurements.
Agents running MGM-2 reveal most of their problem struc-
ture, while the other algorithms maintain a substantially
higher degree of constraint privacy. In the case of Max-
ADCSPs (Figure 10), MCS-MGM reveals 0.244% of con-
straint information, GCA-MGM reveals 0.32%, ACLS re-
veals 57.25% and MGM-2 reveals 82.06% of the private
constraint information. Privacy loss measurements for the
random graphical games are presented in Figure 11. Pri-
vacy loss is 1.28%, 1.58%, 5.819% and 95.19% respectively.
Note that ACLS’s exhibits a great improvement in privacy
preservation. This improvement is due to the fact that in
the graphical games problems setup, ACLS agents managed
to converge to a solution within a short number of cycles.
In fact, the slight change in privacy loss for MCS-MGM and

Figure 10: Privacy loss - Max-ADCSP

Figure 11: Privacy loss - random graphical games

GCA-MGM may also be explained by the longer time to
convergence. We conclude that quick convergence to a solu-
tion may have a substantial impact on privacy loss.

6. CONCLUSIONS
Many problems which are distributed by nature include

agents which have different valuations of the possible states
of the world. For distributed constraints optimization prob-
lems agents can have different costs assigned to valued con-
straints. The present paper describes the shortcomings of
representing asymmetric interactions by the standard DCOP
model. An alternative model - Asymmetric Distributed Con-
straint Optimization (ADCOP) is proposed. The proposed
ADCOP represent private gains without revealing private
information a priori. Instead, agents reveal only the infor-
mation which is necessary during the distributed search for
a solution. This is in contrast to alternative DCOP formu-
lations which either centralize constraints (reveal all infor-
mation and may result in a heavy network load), or change
the problem into a more complex structure (PEAV).

The algorithmic impact of introducing a new framework
was discussed, as well as the applicability of existing DCOP
algorithms. Three novel algorithms for ADCOPs were pro-
posed: ACLS, MCS-MGM and GCA-MGM. In these al-
gorithms agents cooperate and perform search in their local
neighborhood, instead of maximizing their own gain. A con-
vergence proof for GCA-MGM, which is of great importance
in terms of privacy preservation, was presented.
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Extensive empirical evaluation of the proposed ADCOP
algorithms was performed on two large scale multi agents
setups. These demonstrated that the new algorithms con-
sistently find higher quality solutions, and do so with a high
degree of privacy preservation. It turns out that the conver-
gence property limits strongly the amount of privacy loss.
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[20] R. Stranders, A. Farinelli, A. Rogers, and N. R.
Jennings. Decentralised coordination of continuously
valued control parameters using the max-sum
algorithm. In AAMAS (1), pages 601–608, 2009.

[21] M. E. Taylor, M. Jain, P. Tandon, and M. Tambe.
Using dcops to balance exploration and exploitation in
time-critical domains. In Proc. Workshop on
Distributed Constraints Reasoning (DCR09), at
IJCAI-09, Pasadena, CA, USA, July 2009.

[22] M. Yokoo. Algorithms for distributed constraint
satisfaction problems: A review. Autonomous Agents
& Multi-Agent Sys., 3:198–212, 2000.

[23] M. Yokoo, K.Suzuki, and K. Hirayama. Secure
distributed constraints satisfaction: Reaching
agreement without revealing private information. In
Proc. CP-2002, pages 387–401, Ithaca, NY, USA,
September 2002.

[24] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg.
Distributed stochastic search and distributed
breakout: properties, comparishon and applications to
constraints optimization problems in sensor networks.
Artificial Intelligence, 161:1-2:55–88, January 2005.

[25] R. Zivan. Anytime local search for distributed
constraint optimization. In AAAI-2008, Chicago,
USA, 2008.

1022


